
COMMON REACT
DESIGN PATTERNS

REUSABILITY

WHY TO FOLLOW A DESIGN
PATTERN ?

By utilising Design patterns we
can prevent reinventing the
wheel and hence save time and
effort by using battle tested
and reusable solutions to
common problems and use-
cases.

MAINTABILITY SCALABILITY

Design patterns can make code
much cleaner and well-
structured. Since they are
based on the principles of DRY
and single responsibility the
resulting code is much easier to
understand, test and maintain.

Most of the design patterns are
built around the concept of
extensibility and modularity in
mind which makes adding new
functionalities or modifying
existing ones a piece of cake.

Seperate out the stateful logic into container components and the
UI rendering into dumb presentational components.

Container components - "What" data to render
Presentational components - "How" to render and show the data

1

1.1

Container/Presentational Pattern1.

SUMMARY

EX
AM

PL
E

Container/Presentational Pattern (cont.)1.

1

1.1

EX
AM

PL
E

1

1.1

In this example, the TodoContainer component is responsible
for maintaining the todo list data and making updates to it if
needed.

The TodoList component is a presentational component that
receives the todos array as a prop and renders the list of todos
and doesn't care anything about the state management or any
business logic.

Container/Presentational Pattern (cont.)1.

1

1.1

ADVANTAGES

The main advantage of this pattern is that it helps achieve
Seperation of Concerns which results in easier testing,
modularity, and code reusability.

Container/Presentational Pattern (cont.)1.

It enables reusing logic across multiple components by wrapping
them with a higher-order component.

A HOC is a component which takes in another component as prop
and returns an enhanced version of that component.

1

1.1

2. Higher Order Components (HOCs) Pattern

SUMMARY

EX
AM

PL
E

1

1.1

Let's say in our application we have a few components which
are accessible only by authenticated users, instead of writing
the logic to check if a user is authenticated or not inside each
component, we can write an HOC withAuth which will hold
this logic and any component which is wrapped using this HOC
will only be visible to authenticated users.

Implementation on the next slide 👉

2. Higher Order Components (HOCs) Pattern
(cont.)

EX
AM

PL
E

2. Higher Order Components (HOCs) Pattern
(cont.)

1

1.1

1

1.1

ADVANTAGES

Just like the previous pattern the HOC pattern also helps
achieve Seperation of Concerns.

In our example the withAuth HOC abstracted away the
authentication logic from the component while the
component focused solely on its primary responsibility of
rendering the UI.

2. Higher Order Components(HOCs) Pattern
(cont.)

It enables passing functions as props in order to delegate the
rendering control to the consuming component.

The function can take internal component data as arguments and
must return a JSX element.

3. Render Props Pattern

SUMMARY

EX
AM

PL
E

1

1.1

Let's say we have a <Counter/> component, which keeps track
of the current count and also enables us to increment the
count by triggering an increment function.
We want to use this count outside the component and render
different emojis based on the current count value.
One way to solve this problem is to lift the state up but that is
not always feasible and also it might lead to unnecessary re-
rendering in other child components, in order to avoid those
issues we can instead use the Render Props pattern here

See how on the next slide 👉

3. Render Props Pattern (cont.)

EX
AM

PL
E

3. Render Props Pattern (cont.)

1

1

1.1

ADVANTAGES

This pattern helps us achieve reusability and flexibility. We
can reuse the same component in multiple places and
customise the rendering logic as per our requirements using
the render prop.

3. Render Props Pattern (cont.)

It allows creating components that work together to perform a
single task, by sharing internal state and behaviour among each
other.

Instead of creating a single component that takes care of all the
functionality alone we break it into multiple child components
which are compounded together to get the full functionality.

4. Compound Components Pattern

SUMMARY

EX
AM

PL
E

1

1.1

This pattern is very commonly used while building complex
components like <Select/>, <Accordion/>, <Tabs/>, <Menu/>,
etc. for any reusable library.

Let's build a simple implementation for a Tabs component
which will take in a array of tabs as children and also keep
track of the current active tab.

Implementation on the next slide 👉

4. Compound Components Pattern (cont.)

EX
AM

PL
E

4. Compound Components Pattern (cont.)

EX
AM

PL
E

4. Compound Components Pattern (cont.)

This pattern enables better separation of concern, extensibility
and customisation of complex UI components.

In our Tabs example, using the Compound pattern enabled us to
customise the content of each Tab without having to pass any
additional props or configuration to the parent Tabs component.

Also it achieved SOC by making sure the Tabs component is
responsible for managing the overall state and individual Tab
component is responsible only for the rendering logic of each tab.

4. Compound Components Pattern (cont.)

ADVANTAGES

It allows sharing data across multiple components without having
to pass it down explicitly as props at each level.

It utilises the Context API to define the context to be shared
across multiple components and makes it available using the
Context.Provider component.

And a component which is a child of the provider can then
consume the context using Context.Consumer or useContext
hook

5. Provider Pattern

SUMMARY

EX
AM

PL
E

1

1.1

A very common use-case of this pattern is to make the current
selected theme or language accessible and modifiable across
multiple child components.

Let's create a ThemeProvider which will provide the
ThemeContext to all children at any level of the application
tree.

Implementation on the next slide 👉

5. Provider Pattern (cont.)

EX
AM

PL
E

5. Provider Pattern (cont.)

1

1.1

EX
AM

PL
E

5. Provider Pattern (cont.)

This pattern results in a more cleaner and maintainable codebase.

It prevents prop-drilling and since the state is maintained in a
centralised location it becomes very easy to refactor or make any
changes to the state logic.

5. Provider Pattern (cont.)

ADVANTAGES

It enables us to write functions containing stateful logic which can
be reused across multiple components.

Hooks allow functional components to manage state and different
lifecycle methods.

This is the most recent design pattern in the React ecosystem and
by far the most powerful one since it can replace most of the
patterns we have discussed so far

6. Hooks Pattern

SUMMARY

USE CASES

We can perform side-effects at different
lifecycle points of a comp. like
mounting, unmounting and updates
using the useEffect hook

LIFECYCLE METHODS2

We can encapsulate custom logic into
hooks and reuse it across components
just like any inbuilt hooks

REUSE LOGIC3

One of the most common use case of
hooks is to manage state inside
functional components using useState
hook

STATE MANAGEMENT1

6. Hooks Pattern (cont.)

Using hooks like useMemo and
useCallback we can prevent
unnecessary re-rendering of
components and improve performance

PERFORMANCE ENHANCEMENT4

ADVANTAGES

Hooks make testing easier as they
isolate the business logic from the
rendering logic

EASIER TO TEST2

Custom hooks allow easy sharing of
logic and reduce duplication of code

BETTER REUSABILITY3

Functional components with hooks are
easier to understand and simpler as
there are no intricacies of "this" unlike
Class based components

BETTER MAINTABILITY1

6. Hooks Pattern (cont.)

Functional components with hooks are
much more concise when compared to
their Class counterparts, resulting in
smaller bundle size

SMALLER BUNDLE SIZE4

REFERENCES

https://www.patterns.dev/
https://blog.logrocket.com/react-
design-patterns/
https://chat.openai.com/

https://chat.openai.com/

ThankThankThank
you!you!you!

learn,
code &
repeat.

https://www.linkedin.com/in/kanishkachowdhury/
https://www.youtube.com/@kanishk_dev-xw6rs

